

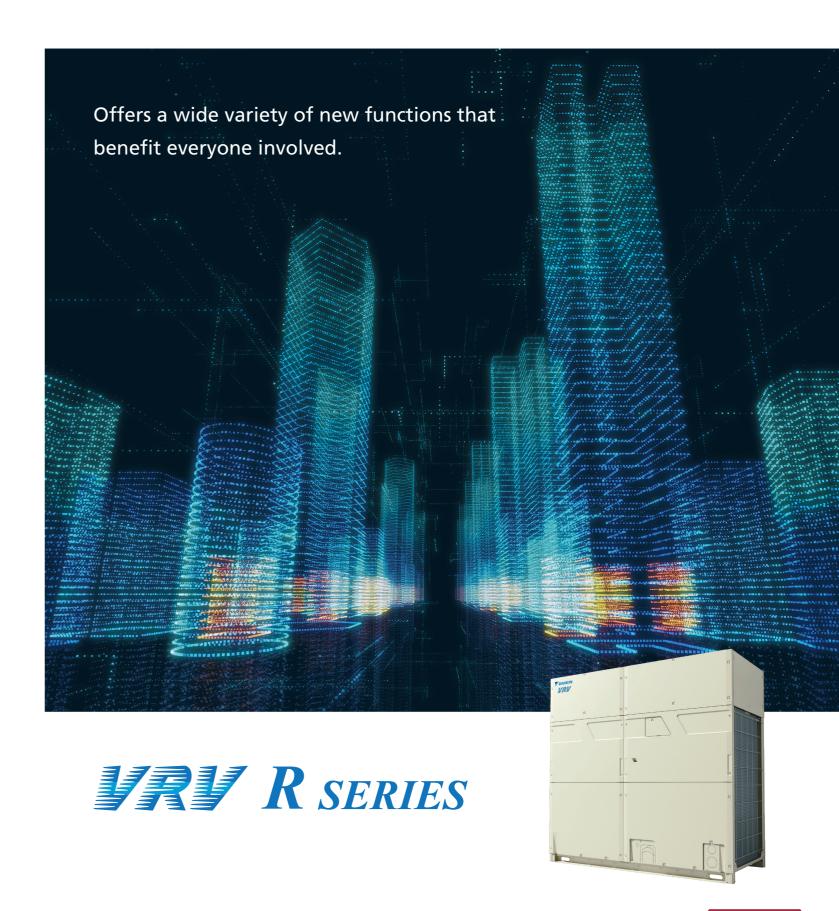
- Ask a qualified installer or contractor to install this product. Do not try to install the product yourself. Improper installation can result in water or refrigerant leakage, electrical shock, fire or explosion.
- Use only those parts and accessories supplied or specified by Daikin. Ask a qualified installer or contractor to install those parts and accessories. Use of unauthorised parts and accessories or improper installation of parts and accessories can result in water or refrigerant leakage, electrical shock, fire or explosion.
- Read the user's manual carefully before using this product. The user's manual provides important safety instructions and warnings. Be sure to follow these instructions and warnings.
- About harmonics, since this product is equipped with an inverter, harmonics will be generated. If local laws require the suppression of harmonics on the building, please take harmonic suppression measures on the electrical equipment side. Please contact your local sales company for details.

If you have any enquiries, please contact your local importer, distributor and/or retailer.

Cautions on product corrosion

- 1. Air conditioners should not be installed in areas where corrosive gases, such as acid gas or alkaline gas, are produced.
- 2. If the outdoor unit is to be installed close to the sea shore, direct exposure to the sea breeze should be avoided. If you need to install the outdoor unit close to the sea shore, contact your local distributor.

Daikin Airconditioning (Hong Kong) Ltd.


17-18F, Futura Plaza, 111-113 How Ming Street Kwun Tong, Kowloon, Hong Kong. Tel: (852) 2570 2786 Fax: (852) 2807 2484 www.daikin.com.hk

VRV is a trademark of Daikin Industries, Ltd.

VRV Air Conditioning System is the world's first individual air conditioning system with variable refrigerant flow control and was commercialised by Daikin in 1982. VRV is the trademark of Daikin Industries, Ltd., which is derived from the technology we call "variable refrigerant volume."

Specifications, designs and other content appearing in this brochure are current as of January 2022 but subject to change without notice.

Next Generation **VRV** system

Featuring unique functions in a new large capacity casing

VRV R series enables flexibility through simultaneous cooling and heating operation with a single VRV system. By recovering heat, it is possible significantly to reduce power consumption. VRV R series adopt a new casing to realise a single module of up to 24 class (HP). In addition, the new models have achieved significant energy savings with improved technology. The operating performance has been improved in all directions by introducing unique ideas, technologies and a wide variety of functions to strengthen design flexibility, easy installation and reliability. We provide higher benefits to various users related to air conditioning systems, for example, building owners, consultants, installers and even building management.

VRV User Benefits

For **OWNERS**

Lifecycle Cost & Comfort

Large-capacity Single Module

- Installation space is reduced by large–capacity casing for max. 24 class (HP).
- Construction cost will be reduced also, because of slimmer main piping size.

Energy Saving Technology

- Further improvement of energy saving by high efficiency compressor and VRT Smart control.
- Achieves high TCSPF/HSPF, that reduces running cost.

Comfort

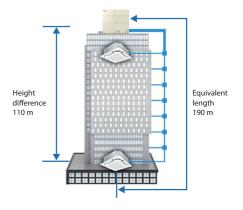
 Aiming for further comfort while saving energy. The new multi-defrost function minimises the unpleasant draft of reverse cycle operation during heating.

Multi-defrost function

Reliability

 Sealed electrical component box (IP55) blocks the ingress of debris or water, that leads to unexpected failures.

VRV User Benefits



Flexible Design & Engineering Supports

Long Refrigerant Piping

- Equivalent length extension max. 190 m
- Height difference extension max. 110 m (20 m longer than conventional models)
- By applying for both extensions at the same time, supports a wide range of applications.

Varied Lineup of Indoor Units

• With various types of indoor units available, comfortable airflow is ensured in every space.

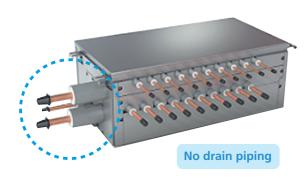
For **INSTALLERS**

Easy Installation

Slimmer Main Piping

• For gas pipe of up to 20 class (HP), the main piping diameter size has been reduced. It enables lowering installation cost.*1

Electrical Component Service Window


- Easy access to the main PCB without removing the front panel.
- Quick field setting and trial operation.

Drainless Multi BS unit

 Piping workability has been greatly improved. The drainless structure enables a drastic reduction of on-site work since no drain piping is required.

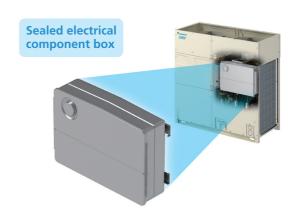
Large-capacity Single Module

- Installation space is reduced by large-capacity casing for max. 24 class (HP).
- Construction cost will be reduced also, because of slimmer main piping size.*1

*1. There are some restrictions. Refer to page 17 for details.

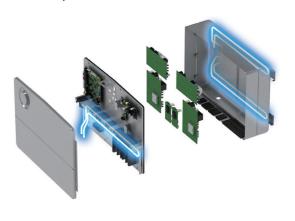
VRV User Benefits

For BUILDING MANAGEMENTS



Reliability & Comfort

IP55 Sealed Component Box


 Sealed electrical component box (IP55) blocks the ingress of debris or water, that leads to unexpected failures.

Refrigerant Piping Cooling System

 Refrigerant cooling circuit enables operation in high outdoor temperatures.

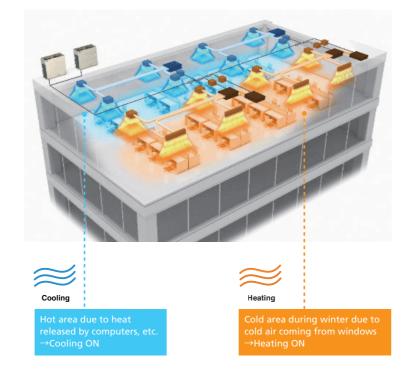
Continuous Air Conditioning (Comfort)

• The new multi-defrost function minimises the drop of room temperature during heating and keep comfort.

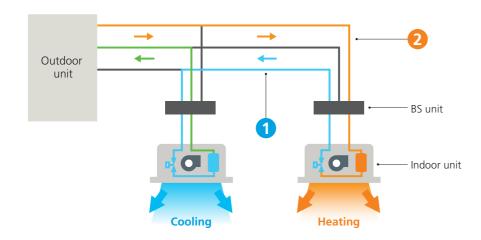
VRV Heat Recovery

■ VRV R series enables flexibility through simultaneous cooling and heating operation with a single **VRV** system.

Situation


Recent office buildings are highly airtight and due to the use of computers, lighting equipment and other office equipments, cooling load increases even in winter.

Need


These buildings require flexible cooling and heating operation.

Solution

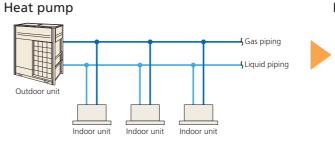
- **VRV** R series enables flexibility through simultaneous cooling and heating operation with a single VRV
- Improves energy efficiency by recycling waste heat.

■ The heat recovery system improves energy efficiency by recycling waste heat.

1 The (cold) waste heat from heating is used for the cooling operation.

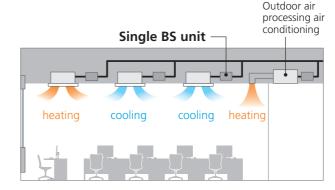
2 The waste heat from cooling is used to generate heat that is needed for heating operation while conserving electricity.

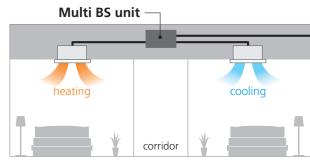
■ BS unit (Single type/Multi type)


By adding suction gas piping and a BS unit (sold separately), simultaneous cooling and heating operation can be provided by a single system.



Single BS unit


Multi BS unit


^{*} For indoor units used for cooling only (do not connect to BS unit when using for heat recovery), total capacity index must be 50% or less than the capacity index of the outdoor units

Application reference

Winter season (Office Building)

- Difference between the load of cold air and heat from room is large
- Can be used with the outdoor air processing air conditioning

Winter season (Hotel)

• Able to cater to individual heating and cooling requirement

New Casing

Offers advanced design and new structure with excellent workability. The larger single module casing reduces installation cost and space also.

8, 10, 12 class (HP)

REYQ8BYM REYQ12BYM REYQ10BYM

14, 16, 18, 20 class (HP)

REYQ14BYM REYQ18BYM REYQ16BYM REYQ20BYM

22, 24 class (HP)



Outdoor unit combination

Туре	System o	capacity (HP)	Number of units				Singl	e module	(class)			
	Class (HP)	kW	units	8	10	12	14	16	18	20	22	24
	24	67.0	Double			••						
	28	78.4		•	••							
	32	89.5			••	•						
	34	95.0			•	••						
High Efficiency	36	101	Triple			•••						
	38	106			••				•			
	40	112				••		•				
	42	117				••			•			
	44	124				•	•		•			
	8	22.4		•								
	10	28.0	1		•							
	12	33.5				•						
	14	40.0	1				•					
	16	45.0	Single					•				
	18	50.0							•			
	20	56.0								•		
	22	61.5									•	
	24	67.0										•
	26	73.5				•	•					
	28	78.5				•		•				
	30	83.5	-			•			•			
	32	89.5	-			•				•		
Standard	34	96.0	-				•			•		
J tail a a i	36	101	-					•		•		
	38	106	Double						•	•		
	40	112	1							••		
	42	117	1						•			•
	44	123	1							•		•
	46	129	1								•	•
	48	134	1									••
	50	140				•			•	•		
	52	146	1			•				••		
	54	152	1				•			••		
	56	157	Triple					•		••		
	58	162	1						•	••		
	60	168	1							000		

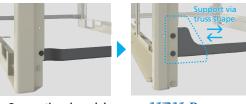
■ Large-capacity single module

Single module reduces installation space

Installation space 1.44 m²

Machine weight 460 kg

Installation space 1.34 m²


Machine weight 409 kg

■ New reinforced design

The frame structure has been strengthened to improve resistance to earthquakes and wind while protecting against falling damage.

1 Minimises horizontal wobbling

Conventional models

URV R SERIES

2 Minimises vibration from various angles

Conventional models

VRV R SERIES


Energy Savings

High TCSPF / HSPF


Energy savings during actual operation have been further improved by the evolution of software and hardware technologies.

Achieved high values for TCSPF and HSPF in all series.

TCSPF (for commercial use)

HSPF (for commercial use)

What are **TCSPF and HSPF?**

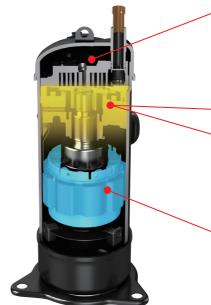
TCSPF: Total Cooling Seasonal Performance Factor HSPF: Heating Seasonal Performance Factor

TCSPF & HSPF represents the ratio of the Total Cooling & Heating capacity of the air-conditioner relative to the Total energy consumed by the air-conditioner during the Total Cooling & Heating operation periods in a year.

Since the geography of Oceania is large with varying climate conditions, the same product will perform differently depending on the area.

As a result, the rating system devices the continent into distinct climate zones (hot, average, and cold) and indicates each performance factor different temperature conditions.

Principal cities of each area


HOT: Brisbane, Darwin

AVERAGE : Adelaide, Perth, Sydney

COLD: Canberra, Hobart, Melbourne, New Zealand

Hardware technology High Efficiency Compressor

New technologies increase seasonal efficiency and enable a compact design.

Improvement of the discharge port

By improving the shape of the refrigerant discharge port, the pressure increase near the discharge port of the gas refrigerant after compression is suppressed and the compression loss is reduced.

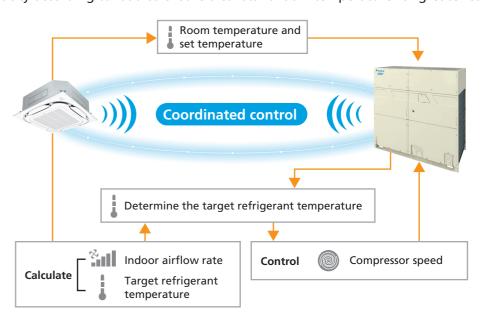
Optimising the back pressure control

New oil control function

In addition to the conventional intermediate pressure adjustment port, the pressing pressure of the orbiting scroll during operation has been optimised, and the newly adopted oil control mechanism has reduced gas leakage and mechanical loss.

Adoption of a high-performance concentrated motor

By adopting it, the coil circumference is greatly reduced, which makes the coil denser and thicker, and the electrical resistance of the coil is dramatically reduced to improve motor efficiency. Furthermore, the motor is light-weighted and downsized.

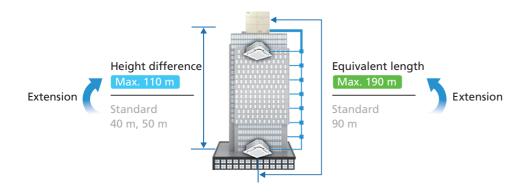

12

Software technology VRT Smart contro

Fully Automatic Energy-saving Refrigerant Control

Optimal supply exactly meets the required capacity of indoor units

- Reduces compressor load and minimises operation loss so it is energy saving.
- Controls capacity according to load to ensure a constant room temperature for greater comfort.



^{*} For the classification of indoor units (VRT smart control and VRT control), refer to the indoor unit lineur

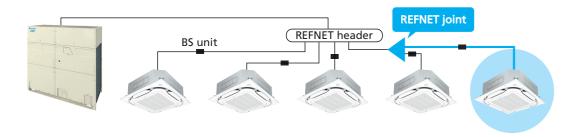
Design Flexibility Design Flexibility

■ Height difference and equivalent length can be extended simultaneously

Main piping (outdoor unit to first branch) can be increased by two sizes, and height difference length and equivalent length can be extended simultaneously.

• Height difference extension Max. 110 m

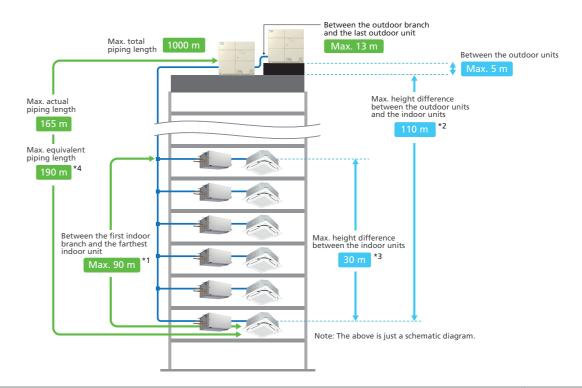
For height differences exceeding 50 m with the outdoor unit above the indoor unit and 40 m with the outdoor unit below, the main piping liquid piping size must be increased.


• Equivalent length extension Max. 190 m

When the equivalent piping length from outdoor unit to indoor unit is 90 m or more, be sure to increase the main piping liquid

Furthermore, in some cases the main piping size must be increased for piping length extension (up to 90 m) from the first branch to the indoor unit.

■ REFNET header downstream branching supported


Piping branch by REFNET joint is possible downstream of REFNET header. The indoor unit arrangement can be more flexible.

REFNET	Indoor unit total capacity	
3 pipes	2 pipes	at REFNET joint
KHRP25M33H, KHRP25M72H + KHRP25M72TP	KHRP26M22H, KHRP26M33H,KHRP26M72H	< 50
KHRP25M73H + KHRP25M73TP	KHRP26M73H + KHRP26M73HP	≤ 140

Long piping length

Long piping length enhances design flexibility, enabling support for large buildings

	Actual piping length (Equivalent)	165 m (190 m)*4
Maniana allamable sisies les eth	Total piping length	1000 m
Maximum allowable piping length	Between the first indoor branch and the farthest indoor unit	90 m*1
	Between the outdoor branch and the last outdoor unit (Equivalent)	10 m (13 m)
	Between the outdoor units (Multiple use)	5 m
Maximum allowable height difference	Between the indoor units	30 m
	Between the outdoor units and the indoor units	110 m* ²

^{*1.} No special requirements up to 40 m. The maximum actual piping length can be 90 m, depending on conditions. Various conditions and requirements have to be met to allow utilisation of 90 m piping length. Be sure to refer to the Engineering Data Book for details of these conditions and requirements.

Connection ratio

Connection capacity at maximum is 200%.

Connection ratio 50%-200%

Connection	Total capacity index of the indoor units
ratio =	Capacity index of the outdoor units

Conditions of VRV indoor unit connection canacity

	Indoor units	
Applicable VRV indoor units	FXDQ FXSQ FXMQ-PA FXAQ	Other VRV indoo unit models*1
Single 8 - 20 class (HP)		200%
outdoor units 22, 24 class (HP)	200~	180%
Double outdoor units	200%	160%
Triple outdoor units		130%

^{*1} For the FXF(S)Q25 models, maximum connection ratio is 130 % for the entire range of outdoor units.

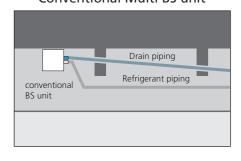
^{*2.} When Height differences above 50 m if the outdoor unit is above the indoor unit and 40 m if the outdoor unit is below the indoor unit, a dedicated setting on the outdoor unit is required. Refer to the Engineering Data Book and contact your local dealer for more information

^{*3.} When Height differences are 15 m or more, maximum actual piping length must be 120 m.
*4. In the case where the equivalent piping length from outdoor unit to indoor unit ≧ 90 m, make sure to up size the liquid pipe of the main pipe. Do not up size the high/low pressure gas pipe and the suction gas pipe.

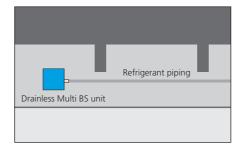
Note: If the operational capacity of indoor units is more than 130%, low airflow operation is enforced in all the indoor units *Refer to page 25 for outdoor unit combination details.

Easy Installation

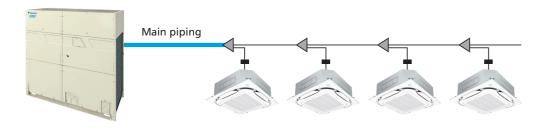
■ Drainless Multi BS unit


Drainless function enables a drastic reduction of on-site work since no drain piping is required.

- Abundant lineup includes port counts of 4, 6, 8, 10, 12, and 16. *
- Drain is eliminated with the use of foam insulation inside the casing. On-site work has significantly been reduced for lower installation costs.


*Drainless function is available up to 12-port unit. The 16-port unit requires drain piping.

Conventional Multi BS unit


New Drainless Multi BS unit

Since no drain piping is required, it can be installed flexibly, and installation costs can be significantly reduced.

Slimmer main piping

For 8-20 class (HP) single models, it is possible to reduce the size of the main pipe to reduce the construction cost.


Slimmer high/low pressure gas piping and suction gas piping can be achieved as shown in the table below. *1

class (HP)	Liquid piping	High/low press	sure gas piping	Suction g	as piping
Class (FIF)	Standard only	Standard	Reduced size	Standard	Reduced size
8	0.5	15.9	15.9	19.1	12.7
10	9.5	10.1	10.1	22.2	
12		19.1	19.1		15.9
14	12.7		40.4		
16		22.2	19.1	20.6	
18			22.2	28.6	19.1
20	15.0				
22	15.9	28.6	28.6		28.6
24				34.9	34.9

- The size of the pipe downstream from the main pipe must not be larger than that of the main pipe.
 Maximum connection ratio: 100%
- The total capacity index of the indoor unit in cooling operation during simultaneous cooling and heating operation shall be 50% or less of the outdoor unit capacity index.
- Maximum equivalent piping length: 70 m

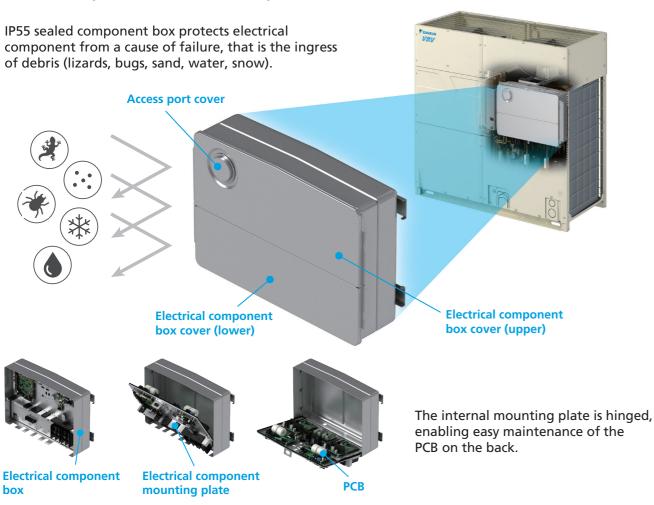
■ Electrical component service window

An electrical component service window is newly installed on the front panel. Main PCB 7-segment LED can be accessed without removing the front panel.

Workability is greatly improved during on-site setting or test run. You can also quickly check the error code during service.

Improved refrigerant piping workability

By dividing piping and wiring holes to the left and right, piping and wiring work can be easily performed on site.



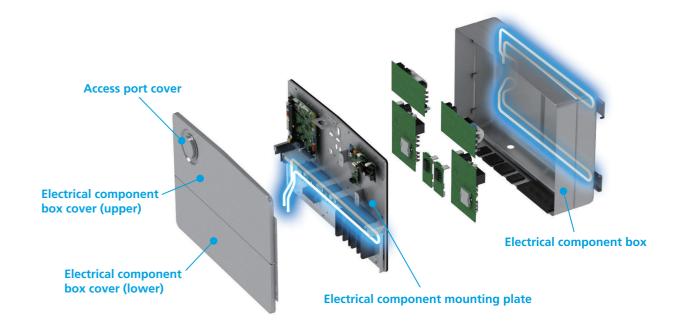
Working in close placed is difficult

Work becomes easier with sufficient space

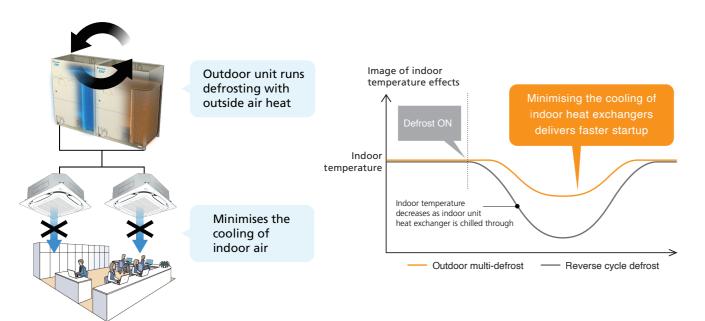
Reliability Reliability

■ IP55-compliant sealed component box

What is IP55?


IP55 is the degrees of dust and water protection for the electrical component box equipped on the product.

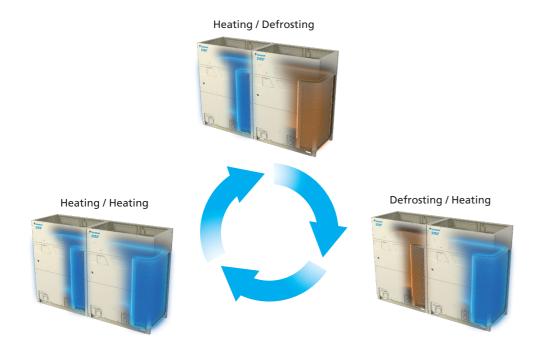
*IP55 is the protection degree of the wiring box as a single unit. The protection grade of outdoor unit is IP14 as well as conventional model.


■ Enables operation in high outdoor temperature

Three refrigerant cooling circuits enable stable operation even in high outdoor temperatures by suppressing a temperature rise for the PCB mounted in the sealed electrical component box.

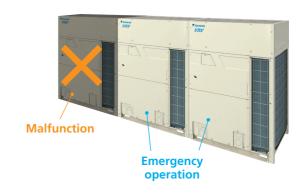
Comfort

Outdoor unit multi-defrost function



Improves comfort of defrosting operation

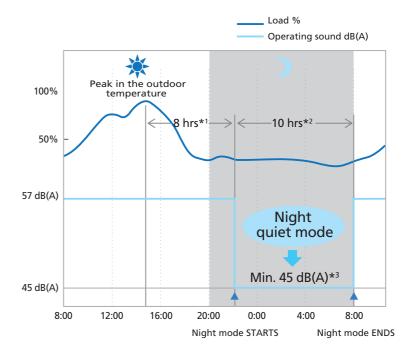
Defrosting in conventional models temporarily reverses the refrigerant cycle to use indoor heat to melt the frost, thus causing the indoor temperature to fall (reverse cycle defrost).


The "outdoor multi-defrost function" enables large-capacity casing models of 22 and 24 class (HP) and multi outdoor units to use outdoor heat for heat exchange and interchange defrost operation while minimising indoor heat absorption and decreases in indoor temperature.

*Reverse cycle defrost may also take place to protect the product.

■ Double backup operation functions

Unit backup operation function



Compressor backup operation function

■ Nighttime quiet operation function

The nighttime quiet operation function automatically suppresses the nighttime operating sound by reducing operation capacity to maintain the quiet environment of the neighborhood. Three selectable modes are available depending on the required level.

- *1. Initial setting is 8 hours. Can be selected from 6, 8 and 10 hours.
- *2. Initial setting is 9 hours. Can be selected from 8, 9 and 10 hours.
- *3. In case of 10 class outdoor unit.

Notes: • This function is available in setting at site.

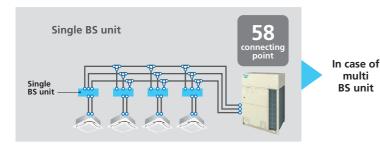
- The operating sound in quiet operation mode is the actual value measured by our company.
 The relationship of outdoor temperature (load) and time shown above is just an example.

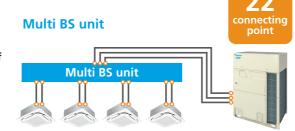
BS Unit Lineup

■ Single and multi BS unit allow greater design flexibility.

Multi BS unit



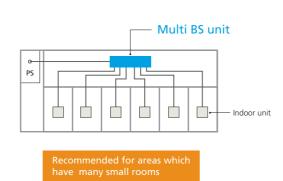

Drainless Type


BS4Q14BVM (4-branch) BS6Q14BVM (6-branch) BS8O14BVM (8-branch) BS10Q14BVM (10-branch) BS12Q14BVM (12-branch)

Standard Type BS16Q14AVM (16-branch)

- No need for drain piping (Drainless type only)
- Easy installation
- Less risk of water leakage
- **■** Wide range lineup
 - Max. 16 branches with a single unit up to 30 class
- Individual control and cooling/heating changeover for each branch
- Installation cost reduction by reduction of brazing points.

* 16-branch model requires drain pipe


Greater design flexibility achieved by increasing the connection capacity range

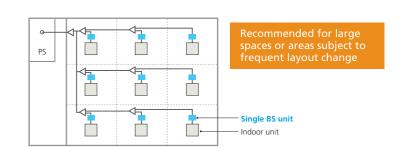
multi

BS unit

Lower transient sound

New BS units achieve lower transient sound level.

Marine and a second			Single BS unit						
Maximum transient sound	4 branch	6 branch	8 branch	10 branch	12 branch	16 branch	100 type	160 type	250 type
Sound level (dB(A))*	45	47	47	48	48	49	40	45	45


^{*}Anechoic chamber conversion value, measured at a point 1 m downward from the unit centre.

Single BS unit

Drainless Type BSQ100AVE BSO160AVE BSQ250AVE

- No need for drain piping
- Easy installation
- Less risk of water leakage
- Compact and flexible installation
- Flexible design
- Low noise

22

■ Specifications for branch

Multi BS unit

MODEL					**************************************							
	BS4Q14BVM	BS6Q14BVM	BS8Q14BVM	BS10Q14BVM	BS12Q14BVM	BS16Q14AVM						
No. of branches	4	6	8	10	12	16						
Capacity index of indoor units of branch			Max. 1	40								
Capacity index of indoor units	Max. 400	Max. 750										
No. of indoor units per branch		5										

Single BS unit

MODEL										
	BSQ100AVE	BSQ160AVE	BSQ250AVE							
No. of branches		1								
Total capacity index of connectable indoor units	20 to 100	More than 100 but 160 or less	More than 160 but 250 or less							
No. of connectable indoor units	ble Max. 5 Max. 8									

Outdoor Unit Lineup

■ Capacity range from 8 to 60 class (HP)

Lineup

class (HP)		8	10	12	14	16	18	20	22	24	26	28	30	32	34	36	38	40	42	44	46	48	50	52	54	56	58	60
<i>VRV</i> R	High Efficiency Type									•		•		•	•	•	•	•	•	•								
SERIES	Standard Type	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

Outdoor unit combinations

High Efficiency Type

class (HP)	kW	Capacity index	Model name	Combination	Outdoor unit multi connection piping kit*1	Total capacity index of connectable indoor units*2	Maximum number of connectable indoor units*2
24	67.0	600	REYQ24BH	REYQ12B × 2	BHFP26R135	300 to 780 (960)	39 (48)
28	78.4	700	REYQ28BH	REYQ8B + REYQ10B × 2		350 to 910 (910)	45 (45)
32	89.5	800	REYQ32BH	REYQ10B × 2 + REYQ12B		400 to 1,040 (1,040)	52 (52)
34	95.0	850	REYQ34BH	REYQ10B + REYQ12B × 2		425 to 1,105 (1,105)	55 (55)
36	101	900	REYQ36BH	REYQ12B × 3	BHFP26R168	450 to 1,170 (1,170)	58 (58)
38	106	950	REYQ38BH	REYQ10B × 2 + REYQ18B	1 201112011100	475 to 1,235 (1,235)	61 (61)
40	112	1,000	REYQ40BH	REYQ12B × 2 + REYQ16B		500 to 1,300 (1,300)	
42	117	1,050	REYQ42BH	REYQ12B × 2 + REYQ18B		525 to 1,365 (1,365)	64 (64)
44	124	1,100	REYQ44BH	REYQ12B + REYQ14B + REYQ18B		550 to 1,430 (1,430)	

Standard Type

class (HP)	kW	Capacity index	Model name	Combination	Outdoor unit multi connection piping kit*1	Total capacity index of connectable indoor units*2	Maximum number of connectable indoor units*2
8	22.4	200	REYQ8B	REYQ8B	-	100 to 260 (400)	13 (20)
10	28.0	250	REYQ10B	REYQ10B	-	125 to 325 (500)	16 (25)
12	33.5	300	REYQ12B	REYQ12B	-	150 to 390 (600)	19 (30)
14	40.0	350	REYQ14B	REYQ14B	-	175 to 455 (700)	22 (35)
16	45.0	400	REYQ16B	REYQ16B	-	200 to 520 (800)	26 (40)
18	50.0	450	REYQ18B	REYQ18B	-	225 to 585 (900)	29 (45)
20	56.0	500	REYQ20B	REYQ20B	-	250 to 650 (1,000)	32 (50)
22	61.5	550	REYQ22B	REYQ22B	-	275 to 715 (990)	35 (49)
24	67.0	600	REYQ24B	REYQ24B	-	300 to 780 (1,080)	39 (54)
26	73.5	650	REYQ26B	REYQ12B + REYQ14B		325 to 845 (1,040)	42 (52)
28	78.5	700	REYQ28B	REYQ12B + REYQ16B		350 to 910 (1,120)	45 (56)
30	83.5	750	REYQ30B	REYQ12B + REYQ18B		375 to 975 (1,200)	48 (60)
32	89.5	800	REYQ32B	REYQ12B + REYQ20B		400 to 1,040 (1,280)	52 (64)
34	96.0	850	REYQ34B	REYQ14B + REYQ20B		425 to 1,105 (1,360)	55 (64)
36	101	900	REYQ36B	REYQ16B + REYQ20B	BHFP26R135	450 to 1,170 (1,440)	58 (64)
38	106	950	REYQ38B	REYQ18B + REYQ20B	DITT 201(133	475 to 1,235 (1,520)	61 (64)
40	112	1,000	REYQ40B	REYQ20B × 2		500 to 1,300 (1,600)	
42	117	1,050	REYQ42B	REYQ18B + REYQ24B		525 to 1,365 (1,680)	
44	123	1,100	REYQ44B	REYQ20B + REYQ24B		550 to 1,430 (1,760)	
46	129	1,150	REYQ46B	REYQ22B + REYQ24B		575 to 1,495 (1,840)	
48	134	1,200	REYQ48B	REYQ24B × 2		600 to 1,560 (1,920)	
50	140	1,250	REYQ50B	REYQ12B + REYQ18B + REYQ20B		625 to 1,625 (1,625)	64 (64)
52	146	1,300	REYQ52B	REYQ12B + REYQ20B × 2		650 to 1,690 (1,690)	
54	152	1,350	REYQ54B	REYQ14B + REYQ20B × 2	BHFP26R168	675 to 1,755 (1,755)	
56	157	1,400	REYQ56B	REYQ16B + REYQ20B \times 2	DI 11 1 201(100	700 to 1,820 (1,820)]
58	162	1,450	REYQ58B	REYQ18B + REYQ20B × 2		725 to 1,885 (1,885)	
60	168	1,500	REYQ60B	REYQ20B × 3		750 to 1,950 (1,950)	

Notes: *1. For multiple connection of 26 class systems and above, the outdoor unit multi connection piping kit (separately sold) is required.

*2. Values inside brackets are based on connection of indoor units rated at maximum capacity, 200% for REYQ8-20BYM, 180% for REYQ22/24BYM, 160% for double outdoor units, and 130% for triple outdoor units. Refer to page 14 for note on connection capacity of indoor units.

Indoor Unit Lineup

■ Enhanced range of choices

										New	ineup	VRI	Indo	or un	its subj	ect to	VRT sr	mart c	ontro
ory				20	25	32		50	63	71	80	100	125	140	145	160	180	200	250
Category	Туре	Model Name			2.8	3.6									16.2			22.4	
Ca			Capacity Index		25				62.5			100	125	140	145		180	200	250
tte	Round Flow Cassette with Sensing	FXFSQ-AVM																	
Casse	Round Flow Cassette	FXFQ-AVM								: : : :									
ounted	Compact Multi Flow Cassette	FXZQ-AVM							1										
Ceiling Mounted Cassette	Double Flow Cassette	FXCQ-AVM																	
Ce	Corner Cassette	FXKQ-MA						1			1								
t (1)	Clim Duct (Standard)	FXDQ-PDVE	(700 mm width type)					1											
Ceiling Concealed Duct	Slim Duct (Standard)	FXDQ-NDVE	(900/1,100 mm width type)		1	1													
Conceal	Middle Static Pressure Duct	FXSQ-PAVE	3							1									
eiling (Middle-High Static Pressure Duct	FXMQ-PAVE																	
U	Outdoor-Air Processing Unit	FXMQ-MFV1			1	1		 	1	1									
papu	4-Way Flow Ceiling Suspended	FXUQ-AVEB						1											
Ceiling Suspended	Coiling Suspended	FXHQ-MAVE																	
Ceilin	Ceiling Suspended	FXHQ-AVM						1											
Wal	l Mounted	FXAQ-AVM								1 1 1 1 1									
anding	Floor Standing	FXLQ-MAVE																	
Floor Standing	Concealed Floor Standing	FXNQ-MAVE																	
	t Reclaim Ventilator n DX-Coil	VKM		Ai	rflow	rate 5	500-9	50 m	³/h										
Hea	t Reclaim Ventilator	VAM	00	Ai	rflow	rate 1	50-2	000 r	n³/h										
Air	Handling Unit	AHUR														8-	60 cla	SS	

1. For indoor units without 'VRT Smart', the standard 'VRT' control is available (excludes Heat Reclaim Ventilators & Outdoor-Air Processing Unit).

Notes: *1. The outdoor unit multi connection piping kit (separately sold) is required for multiple connection.
*2. Values inside brackets are based on connection of indoor units rated at maximum capacity, 160% for double outdoor units, and 130% for triple outdoor units. Refer to page 14 for note on connection capacity of indoor units.

Outdoor Unit Specifications

Specifications

High Efficiency Type

ilgh Efficiency Type	2									Heat Necover		
Model		REYQ24BHYM	REYQ28BHYM	REYQ32BHYM	REYQ34BHYM	REYQ36BHYM	REYQ38BHYM	REYQ40BHYM	REYQ42BHYM	REYQ44BHYM		
		REYQ12BYM	REYQ8BYM	REYQ10BYM	REYQ10BYM	REYQ12BYM	REYQ10BYM	REYQ12BYM	REYQ12BYM	REYQ12BYM		
Combination units		REYQ12BYM	REYQ10BYM	REYQ10BYM	REYQ12BYM	REYQ12BYM	REYQ10BYM	REYQ12BYM	REYQ12BYM	REYQ14BYM		
		_	REYQ10BYM	REYQ12BYM	REYQ12BYM	REYQ12BYM	REYQ18BYM	REYQ16BYM	REYQ18BYM	REYQ18BYM		
ower supply			3-phase 4-wire system, 3	30-415 V/380 V, 50/60 Hz				4-wire system, 380-415 V/380 V,				
Cooling capacity	Btu/h	229,000	268,000	305,000	324,000	345,000	362,000	382,000	399,000	423,000		
cooming capacity	kW	67.0	78.4	89.5	95.0	101	106	112	117	124		
leating capacity	Btu/h	256,000	300,000	345,000	365,000	386,000	406,000	427,000	447,000	474,000		
	kW	75.0	88.0	101	107	113	119	125	131	139		
ower Cooling	kW	17.4	18.8	22.3	24.2	26.4	28.0	30.3	31.8	34.6		
onsumption Heating	kW	19.6	20.3	24.6	27.2	29.7	29.1	33.2	34.1	37.4		
apacity control	%		100	2-100	1-100		2-100		1-100			
EER* Cooling		3.60	3.87	3.74	3.66	3.58	3.54	3.46	3.45	3.36		
COP* Heating		3.61	4.05	3.85	3.71	3.59	3.86	3.56	3.63	3.52		
SPF* (Cooling) Hot		5.65 / 5.03	6.07 / 5.35	5.83 / 5.18	5.73 / 5.10	5.64 / 5.02	5.51 / 4.90	5.44 / 4.84	5.40 / 4.80	5.40 / 4.79		
ommercial / Average		5.73 / 4.31	6.09 / 4.47	5.88 / 4.39	5.80 / 4.35	5.73 / 4.31	5.56 / 4.16	5.51 / 4.14	5.47 / 4.12	5.48 / 4.08		
esidential Cold		6.31 / 4.33	6.70 / 4.43	6.45 / 4.38	6.37 / 4.35	6.31 / 4.33	6.10 / 4.16	6.06 / 4.15	6.02 / 4.13	6.03 / 4.09		
SPF* (Heating) Hot		4.11 / 4.12	4.24 / 4.26	4.12 / 4.13	4.12 / 4.13	4.11 / 4.12	4.08 / 4.09	4.14 / 4.15	4.07 / 4.08	4.11 / 4.12		
ommercial / Average		3.49 / 3.00	3.93 / 3.77	3.71 / 3.39	3.69 / 3.37	3.49 / 3.00	3.67 / 3.36	3.50 / 3.01	3.46 / 2.98	3.20 / 3.01		
esidential Cold		2.80 / 2.46	3.37 / 3.06	3.03 / 2.72	3.03 / 2.71	2.80 / 2.45	3.01 / 2.69	2.81 / 2.46	2.78 / 2.43	2.81 / 2.47		
asing colour			Ivory white	e (5Y7.5/1)				Ivory white (5Y7.5/1)				
ompressor Type			Hermetically se			Hermetically sealed scroll type						
Motor output	kW	7.67+7.67	4.13+5.87+5.87	5.87+5.87+7.67	5.87+7.67+7.67	7.67+7.67+7.67	5.87+5.87+(4.04+6.56)	7.67+7.67+(4.44+5.03)	7.67+7.67+(4.04+6.56)	7.67+8.45+(4.04+6.56)		
irflow rate	l/s	3,015+3,015	2,583+2,812+2,812	2,812+2,812+3,015	2,812+3,015+3,015	3,015+3,015+3,015	2,812+2,812+4,293	3,015+3,015+4,428	3,015+3,015+4,293	3,015+4,327+4,293		
THOW rate	m³/min	181+181	155+169+169	169+169+181	169+181+181	181+181+181	169+169+258	181+181+266	181+181+258	181+260+258		
imensions (H×W×D)	mm	(1,660×930×765) + (1,660×930×765)	(1,660×930×	765) + (1,660×930×765) + (1,6	60×930×765)	(1,660×930×765) + (1,660×930×765) + (1,660×930×765)	(1,660×930×	×765) + (1,660×930×765) + (1,660	0×1,240×765)	(1,660×930×765) + (1,660×1,240×765) + (1,660×1,240×765)		
lachine weight	kg	232+232	227+231+231	231+231+232	231+232+232	232+232+232	231+231+357	232+232+323	232+232+357	232+281+357		
ound level	dB(A)	62	61	(53		64	(55	66		
ound power	dB(A)	86	85	86	87	88	87	88	3	39		
peration Cooling	°CDB		-5 t	o 49				-5 to 49				
nge Heating	°CWB		-25 to	15.5		-25 to 15.5						
. Type			R-4	10A		R-410A						
efrigerant Charge	kg	11.7+11.7	11.7+11.7+11.7	11.7+11.7+11.7	11.7+11.7+11.7	11.7+11.7+11.7	11.7+11.7+11.7	11.7+1	1.7+11.7	11.7+11.7+11.7		
10.00	mm	f 15.9 (Brazing)		f 19.1 (Brazing)				f 19.1 (Brazing)				
Liquid	Piping Gas mm					f 41.3 (Brazing)						
Piping Gas	mm		f 34.9 (Brazing)				f 41.3 (Brazing)				

Heat Recovery

- Notes: Specifications are based on the following conditions;
 Cooling: Indoor temp.: 27°CDB, 19°CWB, Outdoor temp.: 35°CDB, Equivalent piping length: 7.5 m, Height difference: 0 m.
 - Heating: Indoor temp.: 20°CDB, Outdoor temp.: 7°CDB, 6°CWB, Equivalent piping length: 7.5 m, Height difference: 0 m.
 Sound level: Anechoic chamber conversion value, measured at a point 1 m in front of the unit at a height of 1.5 m.

 - During actual operation, these values are normally somewhat higher as a result of ambient conditions and oil recovery mode.

 When there is concern for noise the surrounding area such as residences, we recommend investigating the installation location and taking soundproofing measures.
 - \bigstar Values based on GEMS determination 2019.

TCSPF: Total Cooling Seasonal Performance Factor HSPF: Heating Seasonal Performance Factor

In simple terms, TCSPF & HSPF represents the ratio of the Total Cooling & Heating capacity of the air-conditioner relative to the Total energy consumed

by the air-conditioner during the Total Cooling & Heating operation periods in a year.

Whereas the previous index of AEER & ACOP was calculated using only one representative outdoor temperature (35°C for cooling and 7°C for heating), the new index of TCSPF & HSPF uses a broader range of annual outdoor temperatures* as stipulated in AS/NZS 3823.4.1:2014.

Further, the annual outdoor temperatures are based on zoning Australia/ New Zealand into three distinct climate zones (Hot/Average/Cold).

This allows you to determine the performance efficiency of different air-conditioners by comparing their TCSPF & HSPF within the same climate zone.

* There are two kinds of annual outdoor temperatures and it's different for residential and commercial use.

Outdoor Unit Specifications

Specifications

Standard Type

taridard	a Type															Treat necovery	
Model			REYQ8BYM	REYQ10BYM	REYQ12BYM	REYQ14BYM	REYQ16BYM	REYQ18BYM	REYQ20BYM	REYQ22BYM	REYQ24BYM	REYQ26BYM	REYQ28BYM	REYQ30BYM	REYQ32BYM	REYQ34BYM	
Combination			_	_	_	_	_	_	_	_	_	REYQ12BYM	REYQ12BYM	REYQ12BYM	REYQ12BYM	REYQ14BYM	
Combination	i units		_	_	_	_	_	_	_	_	_	REYQ14BYM	REYQ16BYM	REYQ18BYM	REYQ20BYM	REYQ20BYM	
Power supply					3-phase 4-wire	system, 380-415	V/380 V, 50/60 H	Z				3-phase 4-wi	re system, 380-415 V/38	0 V, 50/60 Hz			
Cooling capac	city	Btu/h	76,400	95,500	114,000	136,000	154,000	171,000	191,000	210,000	229,000	251,000	268,000	285,000	305,000	328,000	
cooming capac	city	kW	22.4	28.0	33.5	40.0	45.0	50.0	56.0	61.5	67.0	73.5	78.5	83.5	89.5	96.0	
Heating capac	city	Btu/h	85,300	107,000	128,000	154,000	171,000	191,000	215,000	235,000	256,000	282,000	299,000	319,000	345,000	369,000	
leating capac	Lity	kW	25.0	31.5	37.5	45.0	50.0	56.0	63.0	69.0	75.0	82.5	87.5	93.5	101	108	
Power	Cooling	kW	5.17	6.80	8.71	11.2	12.9	14.4	17.5	18.6	21.3	19.9	21.6	23.1	26.2	28.7	
consumption	Heating	kW	5.68	7.29	9.81	12.8	13.6	14.5	17.2	19.6	22.2	22.6	23.4	24.3	27.3	30.0	
Capacity contr	rol	%	6-100	7-	100	6-100	3-	100	2-100	2-100	3-	100		2-	100		
AEER*	Cooling		4.00	3.83	3.61	3.34	3.28	3.27	3.03	3.12	2.98	3.45	3.40	3.39	3.22	3.15	
ACOP*	Heating		4.09	4.04	3.61	3.32	3.46	3.63	3.47	3.33	3.21	3.44	3.54	3.65	3.52	3.42	
CSPF* (Cooling	n) Hot		6.42 / 5.57	5.93 / 5.27	5.64 / 5.02	5.64 / 4.96	5.15 / 4.58	5.09 / 4.53	4.99 / 4.43	4.96 / 4.43	4.76 / 4.25	5.64 / 4.99	5.35 / 4.76	5.30 / 4.72	5.22 / 4.64	5.25 / 4.64	
Commercial /	Average		6.43 / 4.55	5.96 / 4.44	5.72 / 4.31	5.72 / 4.14	5.21 / 3.90	5.16 / 3.89	5.12 / 3.84	5.08 / 3.86	4.90 / 3.74	5.73 / 4.22	5.42 / 4.07	5.38 / 4.05	5.34 / 4.01	5.36 / 3.96	
Residential	Cold		7.15 / 4.48	6.52 / 4.41	6.30 / 4.32	6.30 / 4.16	5.72 / 3.90	5.67 / 3.90	5.67 / 3.90	5.62 / 3.90	5.43 / 3.80	6.31 / 4.23	5.96 / 4.07	5.91 / 4.06	5.90 / 4.05	5.93 / 4.00	
HSPF* (Heating	g) Hot		4.57 / 4.58	4.12 / 4.13	4.10 / 4.11	4.22 / 4.15	4.18 / 4.18	4.02 / 4.03	3.88 / 3.89	4.01 / 3.93	3.96 / 3.88	4.17 / 4.17	4.16 / 4.16	4.06 / 4.07	3.97 / 3.98	4.02 / 3.96	
Commercial /	Average		4.30 / 4.15	3.72 / 3.59	3.48 / 3.00	3.32 / 2.80	3.52 / 3.01	3.41 / 2.93	2.98 / 2.80	3.05 / 2.51	2.98 / 2.44	3.26 / 3.06	3.51 / 3.01	3.44 / 2.97	3.35 / 2.87	3.12 / 2.61	
Residential	Cold		3.80 / 3.53	3.22 / 2.88	2.80 / 2.46	2.76 / 2.36	2.81 / 2.46	2.74 / 2.39	2.62 / 2.29	2.67 / 2.09	2.61 / 2.03	2.86 / 2.52	2.81 / 2.46	2.77 / 2.42	2.69 / 2.35	2.74 / 2.18	
Casing colour			Ivory white (5Y7.5/1)							Ivory white (5Y7.5/1)							
Compressor	Туре					etically sealed scro	ll type						ermetically sealed scroll t	ype			
Compressor	Motor output	kW	4.13	5.87	7.67	8.45	4.44+5.03	4.04+6.56	4.51+7.37	7.06+7.37	7.80+8.11	7.67+8.45	7.67+(4.44+5.03)	7.67+(4.04+6.56)	7.67+(4.51+7.37)	8.45+(4.51+7.37)	
Airflow rate		ℓ/s	2,583	2,812	3,015	4,327	4,428	4,293	5,095	7,1	70	3,015+4,327	3,015+4,428	3,015+4,293	3,015+5,095	4,327+5,095	
All HOW Tate		m³/min	155	169	181	260	266	258	306	43	0	181+260	181+266	181+258	181+306	260+306	
Dimensions (H	H×W×D)	mm		1,660×930×765			1,660×1	,240×765		1,660×1,7	750×765		(1,660×930×765) +	- (1,660×1,240×765)		(1,660×1,240×765) + (1,660×1,240×765)	
Machine weig	ght	kg	227	231	232	281	323	35	57	40	9	232+281	232+323	232+357	232+357	281+357	
Sound level		dB(A)	56	57	59	63	62	61	65	67	68	(54	63	66	67	
Sound power		dB(A)	8	30		83		85	89	90	0	3	36	87		90	
Operation C	Cooling	°CDB				-5 to 49							-5 to 49				
range F	Heating	°CWB				-25 to 15.5							-25 to 15.5				
	Туре					R-410A							R-410A			11.7+11.7	
Refrigerant (Charge	kg	11.7	11.7	11.7		1	1.7			11.7				11.7+11.7		
Pining	Liquid	mm		(Brazing)		₱ 12.7 (Brazing)		ø 15.9 (I	Brazing)	ø 15.9 (B	Brazing)						
connections \sqsubseteq	Gas			φ 22.2 (Brazing)						φ 28.6 (Brazing)							
F	High and low pressure gas	mm	₱ 15.9 (Brazing)	φ 19.1	(Brazing)												

Heat Recovery

Notes: Specifications are based on the following conditions;

St. Specifications are based on the following conditions;
 Cooling: Indoor temp.: 27°CDB, 19°CWB, Outdoor temp.: 35°CDB, Equivalent piping length: 7.5 m, Height difference: 0 m.
 Heating: Indoor temp.: 20°CDB, Outdoor temp.: 7°CDB, 6°CWB, Equivalent piping length: 7.5 m, Height difference: 0 m.
 Sound level: Anechoic chamber conversion value, measured at a point 1 m in front of the unit at a height of 1.5 m.
 During actual operation, these values are normally somewhat higher as a result of ambient conditions and oil recovery mode.
 When there is concern for noise the surrounding area such as residences, we recommend investigating the installation location and taking soundproofing measures.
 * Values based on GEMS determination 2019.

TCSPF: Total Cooling Seasonal Performance Factor HSPF: Heating Seasonal Performance Factor

In simple terms, TCSPF & HSPF represents the ratio of the Total Cooling & Heating capacity of the air-conditioner relative to the Total energy consumed by the air-conditioner during the Total Cooling & Heating operation periods in a year.

Whereas the previous index of AEER & ACOP was calculated using only one representative outdoor temperature (35°C for cooling and 7°C for heating), the new index of TCSPF & HSPF uses a broader range of annual outdoor temperatures* as stipulated in AS/NZS 3823.4.1:2014.

Further, the annual outdoor temperatures are based on zoning Australia/ New Zealand into three distinct climate zones (Hot/Average/Cold).

This allows you to determine the performance efficiency of different air-conditioners by comparing their TCSPF & HSPF within the same climate zone.

* There are two kinds of annual outdoor temperatures and it's different for residential and commercial use.

Outdoor Unit Specifications

Specifications

Standard Type

Standard	турс														Heat Necover		
Model			REYQ36BYM	REYQ38BYM	REYQ40BYM	REYQ42BYM	REYQ44BYM	REYQ46BYM	REYQ48BYM	REYQ50BYM	REYQ52BYM	REYQ54BYM	REYQ56BYM	REYQ58BYM	REYQ60BYM		
			REYQ16BYM	REYQ18BYM	REYQ20BYM	REYQ18BYM	REYQ20BYM	REYQ22BYM	REYQ24BYM	REYQ12BYM	REYQ12BYM	REYQ14BYM	REYQ16BYM	REYQ18BYM	REYQ20BYM		
Combination	units		REYQ20BYM	REYQ20BYM	REYQ20BYM	REYQ24BYM	REYQ24BYM	REYQ24BYM	REYQ24BYM	REYQ18BYM	REYQ20BYM	REYQ20BYM	REYQ20BYM	REYQ20BYM	REYQ20BYM		
			_	_	_	_	_	_	_	REYQ20BYM	REYQ20BYM	REYQ20BYM	REYQ20BYM	REYQ20BYM	REYQ20BYM		
Power supply						e system, 380-415							380-415 V/380 V, 50/60 Hz				
Cooling capaci	ity	Btu/h	345,000	362,000	382,000	399,000	420,000	440,000	457,000	478,000	498,000	519,000	536,000	553,000	573,000		
Looming Capaci	ity	kW	101	106	112	117	123	129	134	140	146	152	157	162	168		
Heating capaci	itv	Btu/h	386,000	406,000	430,000	447,000	471,000	491,000	512,000	536,000	560,000	583,000	601,000	621,000	645,000		
leating capaci	ity	kW	113	119	126	131	138	144	150	157	164	171	176	182	189		
'ower	Cooling	kW	30.4	31.9	35.0	35.7	38.8	40.2	42.6	40.9	44.0	46.2	47.9	49.4	52.5		
onsumption	Heating	kW	30.8	31.7	34.4	36.7	39.4	41.8	44.4	41.8	44.5	47.2	48.0	48.9	51.6		
apacity contr	ol	%			1-	100		2-1	100			1	-100				
\EER*	Cooling		3.13	3.13	3.03	3.10	3.00	3.04	2.98	3.22	3.13	3.10	3.09	3.09	3.03		
ACOP*	Heating		3.50	3.58	3.50	3.42	3.36	3.31	3.25	3.58	3.51	3.45	3.50	3.55	3.50		
CSPF* (Cooling)	Hot		5.06 / 4.50	5.04 / 4.48	4.99 / 4.43	4.90 / 4.37	4.87 / 4.34	4.85 / 4.33	4.77 / 4.26	5.17 / 4.59	5.12 / 4.55	5.15 / 4.56	5.04 / 4.47	5.02 / 4.46	4.99 / 4.43		
Commercial /	Average		5.17 / 3.87	5.14 / 3.87	5.13 / 3.84	5.01 / 3.80	5.00 / 3.79	4.98 / 3.80	4.90 / 3.74	5.27 / 3.96	5.25 / 3.94	5.27 / 3.92	5.15 / 3.86	5.14 / 3.86	5.13 / 3.84		
Residential	Cold		5.70 / 3.90	5.68 / 3.90	5.68 / 3.90	5.53 / 3.84	5.54 / 3.85	5.52 / 3.85	5.43 / 3.80	5.82 / 3.99	5.82 / 3.99	5.84 / 3.97	5.70 / 3.90	5.68 / 3.90	5.68 / 3.90		
ISPF* (Heating)	Hot		4.02 / 4.02	3.95 / 3.96	3.89 / 3.90	3.99 / 4.00	3.93 / 3.93	3.99 / 3.91	3.97 / 3.89	3.99 / 4.00	3.94 / 3.95	3.97 / 3.98	3.97 / 3.98	3.93 / 3.94	3.89 / 3.90		
ommercial /	Average		3.09 / 2.90	3.34 / 2.87	2.99 / 2.81	3.04 / 2.84	2.99 / 2.79	3.02 / 2.48	2.99 / 2.45	3.38 / 2.90	3.33 / 2.85	3.07 / 2.88	3.05 / 2.86	3.32 / 2.85	2.99 / 2.81		
tesidential	Cold		2.71 / 2.36	2.68 / 2.34	2.63 / 2.29	2.67 / 2.31	2.62 / 2.27	2.64 / 2.06	2.61 / 2.03	2.71 / 2.37	2.67 / 2.33	2.70 / 2.36	2.68 / 2.34	2.66 / 2.32	2.63 / 2.29		
Casing colour						vory white (5Y7.5/1						Ivory white (5Y7.5/1)					
	Туре				Herm	netically sealed scro	ll type			Hermetically sealed scroll type							
Compressor	Motor output	kW	(4.44+5.03)+ (4.51+7.37)	(4.04+6.56)+ (4.51+7.37)	(4.51+7.37)+ (4.51+7.37)	(4.04+6.56)+ (7.80+8.11)	(4.51+7.37)+ (7.80+8.11)	(7.06+7.37)+ (7.80+8.11)	(7.80+8.11)+ (7.80+8.11)	7.67+(4.04+6.56)+ (4.51+7.37)	7.67+(4.51+7.37)+ (4.51+7.37)	8.45+(4.51+7.37)+ (4.51+7.37)		(4.04+6.56)+(4.51+7.37)+ (4.51+7.37)	(4.51+7.37)+(4.51+7.37) (4.51+7.37)		
.:		l/s	4,428+5,095	4,293+5,095	5,095+5,095	4,293+7,170	5,095+7,170	7,170-	+7,170	3,015+4,293+5,095	3,015+5,095+5,095	4,327+5,095+5,095	4,428+5,095+5,095	4,293+5,095+5,095	5,095+5,095+5,095		
irflow rate		m³/min	266+306	258+306	306+306	258+430	306+430	430-	+430	181+258+306	181+306+306	260+306+306	266+306+306	258+306+306	306+306+306		
Dimensions (H	×W×D)	mm	(1,660×1,24	40×765) + (1,660)	×1,240×765)	(1,660×1,2 (1,660×1,	40×765) + ,750×765)	(1,660×1,7 (1,660×1,			(1,660×930×765) + (1,660×1,240×765) + (1,660×1,240×765) + (1,660×1,240×765) + (1,660×1,240×765)						
Aachine weigl	ht	kg	323+357	357	+357	357-	+409	409-	+409	232+3	357+357	281+357+357	323+357+357	357+3	57+357		
ound level		dB(A)	67	66	68	69	70	7	1	67		-	69		70		
ound power		dB(A)	90	90	92	91		93		91			93		94		
peration	Cooling	°CDB				-5 to 49					•	-5	to 49				
	leating	°CWB				-25 to 15.5						-25	to 15.5				
, T	ype					R-410A						R-	410A				
	Tharge	kg				11.7+11.7				11.7+1	1.7+11.7		11.7+1	.7+11.7			
	iquid	mm										φ 19.1	(Brazing)				
, L	Piping									φ 19.1 (Brazing) φ 41.3 (Brazing)							
Pipina 🗀	as	mm										φ41.3	(Brazing)				

Heat Recovery

- Notes: Specifications are based on the following conditions;

 Cooling: Indoor temp.: 27°CDB, 19°CWB, Outdoor temp.: 35°CDB, Equivalent piping length: 7.5 m, Height difference: 0 m.

 Heating: Indoor temp.: 20°CDB, Outdoor temp.: 7°CDB, 6°CWB, Equivalent piping length: 7.5 m, Height difference: 0 m.

 Sound level: Anechoic chamber conversion value, measured at a point 1 m in front of the unit at a height of 1.5 m.

During actual operation, these values are normally somewhat higher as a result of ambient conditions and oil recovery mode.

When there is concern for noise the surrounding area such as residences, we recommend investigating the installation location and taking soundproofing measures.

* Values based on GEMS determination 2019.

TCSPF: Total Cooling Seasonal Performance Factor HSPF: Heating Seasonal Performance Factor

In simple terms, TCSPF & HSPF represents the ratio of the Total Cooling & Heating capacity of the air-conditioner relative to the Total energy consumed by the air-conditioner during the Total Cooling & Heating operation periods in a year.

Whereas the previous index of AEER & ACOP was calculated using only one representative outdoor temperature (35°C for cooling and 7°C for heating), the new index of TCSPF & HSPF uses a broader range of annual outdoor temperatures* as stipulated in AS/NZS 3823.4.1:2014.

Further, the annual outdoor temperatures are based on zoning Australia/ New Zealand into three distinct climate zones (Hot/Average/Cold). This allows you to determine the performance efficiency of different air-conditioners by comparing their TCSPF & HSPF within the same climate zone.

* There are two kinds of annual outdoor temperatures and it's different for residential and commercial use.

Option List

Outdoor units

High Efficiency Type

No.	Item		Туре	REYQ24BH	REYQ36BH REYQ38BH REYQ40BH	REYQ42BH REYQ44BH							
			REFNET header	KHRP25	KHRP25M33H(Max. 8 branch), KHRP25M72H(Max. 8 branch), KHRP25M73H(Max. 8 branch)								
		Distributive piping * 1	REFNET joint	BHRF	25A22T, BHRP25A33T, BHRP25A72T, BI								
1	Distributive		Pipe size reducer		KHRP25M72TP, KHRP25M73TP								
·	piping*1		REFNET header		M22H(Max. 4 branch), KHRP26M33H(N M72H(Max. 8 branch), KHRP26M73H(N								
			pes REFNET joint BHRF		P26A22TA, BHRP26A33TA, BHRP26A72TA, BHRP26A73TA								
			Pipe size reducer										
2	Outdoor unit multi connection piping kit			BHFP26R135		BHFP26R168							

Note: *1. The appropriate REFNET parts should be selected to match the total capacity index of indoor units connected below each REFNET, based on the installation manual.

Option PCB

No.	Type	REYQ24BH REYQ34BH REYQ40BH REYQ28BH REYQ36BH REYQ42BH REYQ32BH REYQ38BH REYQ44BH
1	DIII-NET expand adaptor	DTA109A51
2	External control adaptor	DTA104A61

Standard Type

No.	Item		Туре	REYQ8B REYQ10B REYQ12B REYQ14B REYQ16B REYQ24B	REYQ28B REYQ30B REYQ32B	REYQ38B REYQ40B REYQ42B REYQ44B REYQ46B REYQ48B	REYQ50B REYQ56B REYQ52B REYQ58B REYQ54B REYQ60B				
	Distributive piping*1		REFNET header	KHRP25	M33H(Max. 8 branch), K KHRP25M73H(N		branch),				
		3 Pipes	REFNET joint	BHRF	BHRP25A22T, BHRP25A33T, BHRP25A72T, BHRP25A73T						
1			Pipe size reducer		KHRP25M72TP, k	KHRP25M73TP					
			REFNET header		M22H(Max. 4 branch), k M72H(Max. 8 branch), k						
		2 Pipes	REFNET joint	BHRP26A22TA, BHRP26A33TA, BHRP26A72TA, BHRP26A73TA							
			Pipe size reducer	KHRP26M73HP							
2	Outdoor unit	multi conne	ection piping kit	-	BHFP26	5R135	BHFP26R168				

Note: *1. The appropriate REFNET parts should be selected to match the total capacity index of indoor units connected below each REFNET, based on the installation manual.

Option PCB

No.	Type	REYQ8B REYQ16B REYQ24B REYQ32B REYQ40B REYQ48B REYQ56B REYQ10B REYQ18B REYQ26B REYQ34B REYQ42B REYQ50B REYQ58B REYQ12B REYQ20B REYQ28B REYQ36B REYQ44B REYQ52B REYQ60B REYQ14B REYQ22B REYQ30B REYQ38B REYQ46B REYQ54B							
1	DIII-NET expand adaptor	DTA109A51							
2	External control adaptor	DTA104A61							

IVICIVIO